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Abstract RNA structure is hierarchical. Secondary structure
contacts, i.e. the canonical base pair contacts, are generally
stronger and form faster than the tertiary structure. Therefore,
RNA secondary structures can be predicted independently of
tertiary structure prediction. Furthermore, the stability of a
given RNA secondary structure can be quantified using near-
est neighbor free energy parameters. These parameters are the
basis of a number of free energy minimization algorithms that
predict RNA secondary structure for either a single sequence
or multiple sequences. This article reviews the progress of
RNA secondary structure prediction by free energy minimi-
zation and describes many of the algorithms that have been
developed.

1 Introduction

Over the last two decades, our understanding of the role
of RNA in biological processes has expanded enormously.
Aside from the roles that RNA plays in the Central Dogma
of Biology both in transiently carrying genetic information
(mRNA) and interpreting the code (tRNA), a number of
important roles have been determined for RNA. RNA is known
to catalyze reactions as diverse as peptide bond formation [1]
and phosphate bond rearrangement [2]. RNA also plays cru-
cial roles in immunity [3], development [4,5], protein locali-
zation [6], and dosage compensation [7]. Given the diversity
of functions, it is not surprising that RNA defects are the
root cause of several human diseases, including Prader-Willi
syndrome [8,9], β-thalassemia [10], and myotonic dystrophy
[11,12].
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RNA is currently used as both a drug target and phar-
maceutical. Many of the existing classes of antibiotics target
ribosomal RNA [13–21]. Antisense and RNAi both modify
the post-transcriptional regulation of genes [22,23]. Oligo-
nucleotides (short nucleic acid strands) can be used to redi-
rect missplicing of RNA transcripts by hybridization [24] or
redirect the formation of structure [25]. Ribozymes (RNA
enzymes) can be tailored to repair defective transcripts [26].

RNA has a hierarchical structure [27]. The primary struc-
ture is the sequence of nucleotides, the secondary structure is
the sum of the canonical (Watson-Crick and GU) base pairs,
and the tertiary structure is the three-dimensional arrange-
ment of atoms. A typical RNA secondary structure is illus-
trated in Fig. 1. In general, secondary structure contacts are
stronger than tertiary structure contacts [28–31]. Further-
more, secondary structure forms on shorter timescales than
tertiary structure [27,32]. Therefore, secondary structure can
be determined largely independently of tertiary structure,
making the RNA-folding problem distinctly different from
the protein-folding problem.

This article reviews many of the advances in predicting
RNA secondary structure by free energy minimization. It
starts by introducing the nearest neighbor model for assign-
ing stability to RNA secondary structures. Then, the com-
putational methods for structure prediction for both a single
sequence and multiple homologous sequences are presented.

2 Nearest neighbor model for predicting RNA
secondary structure stability

The free energy of RNA secondary structure formation at
37◦C can be predicted using empirical nearest neighbor para-
meters [33–35]. The parameters are called “nearest neighbor”
because the stability of each base pair or loop depends only
on the identity of nucleotides in the motif and in the most
adjacent base pairs. Figure 2 shows a sample calculation for
a small structure.

The first use of a nearest neighbor model to quantify the
stability of RNA secondary structure was now over 30 years
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Fig. 1 A typical RNA secondary structure. This is the secondary structure of the 3′ untranslated region of the Drosophila teissieri R2 element
[124,125]. Examples of secondary structure motifs are labeled. Base pairs form helical regions. Unpaired regions are called loops; a hairpin loop
changes the backbone direction by 180◦, a bulge loop is an interruption in base pairing in one strand, an internal loop is the interruption of base
pairing in both strands, and a multibranch loop (helical junction) is a loop from which more than two helices exit. The structure was drawn using
the XRNA program, available from the Santa Cruz RNA Center at http://rna.ucsc.edu/rnacenter/
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Fig. 2 Sample nearest neighbor calculation. The free energy increments
of each motif are indicated and the total stability is the sum of each
increment. Stabilizing interactions are provided by base pairs and base
stacks, e.g. the 3′ dangling G and the GA mismatch in the hairpin loop.
Loops are largely destabilizing because of the entropic cost associated
with constraining the unpaired nucleotides in the loop. For example, the
six-membered hairpin loop has a +5.4 kcal/mol free energy cost for loop
closure. The 2×2 internal loop is overall stabilizing, however, because
of the favorability of tandem GA mismatches

ago [36]. In the intervening time, the models for base pair
and loop stability have been refined on the basis of opti-
cal melting experiments [37–46]. Parameters are chosen to
express the sequence dependence of stability and the parame-
ters have generally become increasingly sequence-dependent
as more experimental data have become available. In general,
the error of each parameter is less than 0.5 kcal/mol [33–35].
The development of the nearest neighbor parameter models
has been reviewed previously [47,48].

3 Dynamic programming algorithm

For the prediction of RNA secondary structures from
sequence, it is clear that a brute-force method for free energy
minimization will never be tractable for anything but very
short sequences [49]. Consider that it has been estimated
that the number of possible secondary structures for a given
sequence is approximately 1.8N , where N is the length of the
sequence [50]. For a short sequence of 100 nucleotides, this
is already 3.4×1025 structures. Given that a single computer
processor can calculate the free energy for 1×104 structures
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Fig. 3 A simple pseudoknot. Pseudoknots, also called non-nested pairs,
are defined as a set of base pairs, i − j and i ′ − j ′, with i < i ′ < j < j ′

in a second, calculating the free energy for each possible
secondary structure explicitly would require 3.4 × 1021 s, or
1.1 × 1014 years!

The solution first used to solve this problem, dynamic
programming, is still the basis of the most popular algo-
rithms [51,52]. A dynamic programming algorithm divides
the problem into a large number of smaller problems and
uses recursion to build the solution to the complete problem.
Two steps are used to predict the lowest free energy struc-
ture. In the first step, called the fill step and the slower of
the two steps, the lowest free energy of secondary structure
formation is calculated and stored for each subfragment of
the total sequence, starting from short fragments and then
progressively calculating the lowest free energy of folding
for longer fragments. At the end of the fill step, the lowest
free energy for a structure from the given sequence is known,
but the structure itself is yet unknown. The second step of the
calculation, traceback, determines the structure that has the
lowest free energy by backtracking through the free energies
of the subsequences. Given the rules of the energy model, the
dynamic programming algorithm guarantees that the low-
est free energy structure (global minimum) is determined.
Two recent reviews of the dynamic programming methodol-
ogy that walk through the process step-by-step are available
[53,54].

The most commonly used secondary structure prediction
algorithms scale O(N 3) in time and O(N 2) in storage [34,
55], where the O refers to the order of the calculation. In
this case, for example, doubling the length of the sequence
would require eight times as much CPU time and four times as
much storage (RAM). A secondary structure prediction cal-
culation for sequences as long as a large subunit ribosomal
RNA (2,904 Nucleotides) can be performed on a modern
laptop computer in less than 2 hours. For a tRNA sequence (77
nucleotides), less than a second of computer time is needed.
However, to achieve this scaling, pseudoknots, also called
non-nested structures, cannot be predicted (Fig. 3). In a large
database of RNA sequences with well-determined secondary
structure, 1.4% of base pairs are pseudoknotted and therefore
cannot be predicted [35]. For some classes of RNA, for exam-
ple tmRNA, which has four pseudoknots, the percentage of
base pairs in pseudoknots can be much higher [56].

A dynamic programming algorithm capable of predict-
ing a large class of pseudoknots, sufficient to find almost all
pseudoknots of biological relevance, was written by Rivas

and Eddy [57]. The algorithm scales O(N 6) in time and
O(N 4) in storage and is therefore impractical for sequences
much longer than 100 nucleotides. Other dynamic program-
ming algorithms capable of predicting pseudoknots have been
devised so that they scale better, but are unable to predict
structures as complex as that by the Rivas and Eddy algo-
rithm [58–60,62]. A recent iterated loop matching algorithm
has also been reported that, given a set of low energy pairs,
can construct low energy structures that contain pseudoknots
[63]. Structures are generated by combining the lowest en-
ergy helices in multiple rounds of helix selection. The iterated
loop matching algorithm does not guarantee the lowest free
energy structure, but it scales O(N 3) in time and is suffi-
ciently fast to be capable of predicting secondary structures
for sequences of thousands of nucleotides.

4 Suboptimal structure prediction

There are limitations to the free energy minimization method.
It assumes that the RNA of interest is at equilibrium, only a
single secondary structure is populated, and the free energy
parameters are without error. Each of these assumptions is
reasonable, as judged by the average accuracy of second-
ary structure prediction, but there are known biological cases
where each assumption is known to be incorrect. Kinetic con-
trol has been shown to play a role in the selection of heli-
ces [64]. There are natural RNA switches (riboswitches) and
engineered sequences that are capable of being in more than
a single secondary structure [65–69]. The coding regions of
mRNA sequences are also likely to populate many secondary
structures in solution because evolutionary pressure to adopt
a single conformation is largely absent. There are some non-
nearest neighbor effects that the thermodynamic parameters
neglect and many sequence-specific stabilizations of RNA
secondary structure remain to be determined.

To provide alternative conformations to the lowest free
energy structure, it is desirable to have the capability of find-
ing suboptimal solutions, i.e. secondary structures with low
free energy. The suboptimal structures provide both a set
of alternative hypotheses and also information about how
well-defined the lowest free energy structure is. The original
dynamic programming algorithm solution is a heuristic that
provides representative suboptimal structures by tracing back
from multiple starting base pairs [70,71]. This is still the
most popular method. More recently, a dynamic program-
ming algorithm was written to exhaustively sample all pos-
sible suboptimal structures within a given energy increment
of the lowest free energy structure [72]. The number of sub-
optimal structures grows exponentially with the size of the
energy increment.

5 Accuracy of RNA secondary structure prediction

To test the accuracy of RNA secondary structure predic-
tion, a large and diverse database of RNA sequences with
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Table 1 The accuracy of RNA secondary structure prediction using RNAstructure [34,73]

Type of sequence sensitivity Positive predictive value

SSU rRNA [100] 61.4 ± 23.1(44.2 ± 14.7) 54.5 ± 24.5(37.1 ± 14.4)
LSU rRNA [100] 74.0 ± 12.3(55.2 ± 11.5) 65.8 ± 12.3(47.2 ± 11.7)
5S rRNA [126] 73.8 ± 26.7 64.6 ± 24.0
Group I Intron [100] 68.9 ± 14.5 61.4 ± 14.2
Group II Intron [127] 87.6 ± 2.3 82.7 ± 6.7
RNase P [128] 63.3 ± 14.4 60.8 ± 13.2
SRP [129] 66.4 ± 26.1 50.9 ± 22.3
tRNA [130] 87.0 ± 17.0 85.5 ± 20.0
Average 72.8 ± 9.4 65.8 ± 12.4

Sensitivity is the percentage of known base pairs correctly predicted:

Sensitivity = # of predicted pairs in known structure

total # of pairs in the known structure

Positive predictive value is the percentage of predicted base pairs that are in the known structure:

Positive predicted value = # of predicted pairs in known structure

total # of pairs in the predicted structure

Sensitivity measures the accuracy without regard to false positive predicted pairs and specificity measures accuracy without regard to false
negative predicted pairs. Predicted base pairs are considered consistent with the known base pairs if they are identical with the known pair or
slipped by one nucleotide on one side [34,35,73]. Therefore, a base pair between nucleotides i and j would be considered correctly predicted if
i − j, (i + 1) − j, (i − 1) − j, i − ( j + 1), or i − ( j − 1) were predicted. This scoring method is used because the exact register of base pairs is
difficult to determine by comparative sequence analysis [90]

known secondary structure was assembled [35]. The second-
ary structure for each sequence is predicted and compared
against the known secondary structure. On average, the sen-
sitivity for base pair prediction is 73% and the positive pre-
dictive value is 66% (Table 1) [34,73]. The accuracy can be
improved using experimental data, including chemical and
enzymatic mapping, to constrain the predicted structure [34,
35,73–75].

There are three commonly used secondary structure pre-
diction algorithms available. The first, mfold, is available
for compilation on Unix/Linux and for online structure pre-
diction [76]. The Vienna RNA package is also available for
Unix/Linux compilation or for online folding [77]. RNA-
structure is a user-friendly program for Microsoft Windows
[78]. Each software package uses a different implementation
of the nearest neighbor parameters, and therefore, predicted
secondary structures will differ depending upon the package
used. On average, the accuracy of the software packages are
similar to each other [79].

6 Partition function calculation

A partition function approach to RNA secondary structure
prediction was introduced by McCaskill [80]. The recursions
are similar to those of free energy minimization except that,
instead of calculating the lowest free energy structure for
each subsequence, the secondary structure partition function
is calculated for each subsequence. The partition function for
the full length sequence is then built by recursion from the
shorter fragments. This algorithm also scales O(N 3).

The probability of a given secondary structure, Pstructure,
can be calculated according to:

Pstructure = e−�Go
structure/RT

Q

where R is the gas constant, T is the absolute temperature,
and Q is the partition function. For RNA secondary struc-
tures, there are often many secondary structures with free
energy similar to the lowest free energy structure, making
the probability of any particular secondary structure, even
the lowest free energy structure, quite low. Often the low free
energy structures, however, contain many of the same base
pairs, so a much more informative statistic is the probability
of a base pair between nucleotides i and j , Pi j . This can be
calculated using:

Pi j = Q′
i j

Q

where Q′
i j is the partition function constrained such that nu-

cleotides i and j are base paired [73]. Q′
i j and Q can be

calculated for all i and j in a total of twice the computational
time as calculating Q alone.

The probability of a given base pair is a good measure of
how well-defined the base pair is. For example, on average
for the diverse database of sequences from Table 1, the base
pairs in the lowest free energy structure, with greater than or
equal to 99% pairing probability, have a positive predictive
value of 91.0 ± 5.9% [73]. On average, nearly a quarter of
base pairs in the lowest free energy structure have this high
pairing probability [73]. Drawings of secondary structures
can be color-annotated according to base pairing probability.
This provides a convenient method for the user to identify
predicted base pairs that are more likely to be correctly pre-
dicted.

Ding and Lawrence revisited the generation of subopti-
mal structures from the standpoint of the partition function
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calculation [81,82]. They devised an elegant stochastic trace-
back method that can sample secondary structures accord-
ing to Boltzmann probabilities. It has been demonstrated
that average structural features of sampled structures corre-
late to experimental measurements [83]. Recently, they have
devised a method for determining the centroid, or most repre-
sentative structure from the sampled ensemble [84]. On aver-
age, the centroid has base pair prediction sensitivity similar to
the lowest free energy structure, but has significantly higher
positive predictive value.

7 Genetic algorithm

Another solution to finding the lowest free energy RNA sec-
ondary structure is to use a genetic algorithm. In genetic
algorithms, a set of structures is maintained and subjected
to random mutations [85]. Mutated structures with higher
fitness, i.e. lower free energy, can be chosen to replace pre-
vious existing structures in the list of structures for future
rounds of mutation. The genetic algorithm is distinct from
Monte Carlo algorithms because some mutations are cross-
overs, in that they are composed of substructures from more
than one previously existing structure.

The genetic algorithm was written to consider the effect
of kinetics on secondary structure formation [85,86]. The
sequence is lengthened from 5′ to 3′ to mimic the elongation
of an RNA sequence as it is transcribed from a DNA template.
It is hypothesized that stable base pairs that form within nu-
cleotides at the 5′ end can become kinetically trapped during
transcription. The genetic algorithm recapitulates this and it
has been shown that progressive sequence elongation results
in more accurate secondary structure prediction than starting
with the entire sequence.

There are two drawbacks to genetic algorithms. The first
is that the lowest free energy structure is not guaranteed as
it is with a dynamic programming algorithm. The second is
that the method is a simulation and therefore the algorithm
can converge on different solutions if it is run multiple times.

8 Finding a secondary structure common to multiple
sequences

The gold standard for RNA secondary structure determi-
nation, in the absence of a high resolution crystal struc-
ture, is comparative sequence analysis [87]. Multiple homol-
ogous sequences, often derived from different species, are
aligned so that conserved base pairs are revealed. Base pairs
are considered for the secondary structure only if they can
occur in most of the aligned sequences. Furthermore, base
pairs are proven by compensating base changes, e.g. an AU
pair in one sequence is replaced by a GC pair in a different
sequence. These compensating changes indicate that the sec-
ondary structure has been conserved although the sequence
is not conserved.

RNA secondary structures for natural structural RNA se-
quences have been determined prior to crystallization in all

cases. In fact, knowledge of the secondary structure has been
helpful in the design of constructs of RNA sequences that
would crystallize and diffract [88,89]. In the case of ribo-
somal RNA sequences, 97% of base pairs predicted by com-
parative sequence analysis were subsequently demonstrated
by subsequent solution of crystal structures [90].

Comparative sequence analysis is labor intensive and
dependent on the skill and insight of the investigator. Given
that the method is very robust for determining secondary
structures with high positive predictive value and given that
there is a great deal of sequence data available in the age
of whole genome sequencing, there is significant interest in
using multiple sequences to constrain secondary structure
prediction.

There are largely two approaches to finding a secondary
structure common to multiple sequences. The first approach
is to predict the structure common to multiple sequences in
a fixed alignment [91–94]. The second approach is to simul-
taneously find the optimal secondary structure and align-
ment [95–98]. Structure prediction using a fixed alignment
is significantly faster because the space of solutions is much
smaller. Simultaneous alignment and structure prediction is
more robust than using a fixed alignment, because it is hard
to determine an alignment on the basis of sequence matching
because of the existence of compensating base pair changes.
A number of both methods were recently benchmarked for
accuracy [99].

9 Methods that use a fixed alignment

Alifold is a dynamic programming algorithm for predicting
the lowest free energy structure common to a sequence align-
ment [94]. It can also be used, with a partition function, to
determine base pair probabilities for the consensus structure.
It is rooted in the nearest neighbor parameters for folding free
energy, but it uses a composite energy based on the sequence
identity of a given position in the alignment that biases the
energy function to favor base pair formation by columns with
compensating base pair changes. The algorithm scales O(A3)
where A is the number of columns in the sequence alignment.

Alifold was benchmarked using a set of small and large
subunit ribosomal RNA sequences with known secondary
structure [94,100]. As the number of sequences in the align-
ment increased, the accuracy of the consensus structure was
increased. For the single E. coli small subunit rRNA, the
sensitivity of base pair prediction was 47.2%. Using a Clu-
stalW alignment of nine sequences as input for Alifold, the
sensitivity of base pair prediction was 82.1% [101].

A different approach to finding a common structure in
a fixed sequence alignment is used by the program Con-
Struct [92]. ConStruct predicts the base pair probabilities
for each sequence of the alignment separately [102]. Then
the sequence alignment is used to find consensus base pair
probability by summing the probability for each sequence.
Overall, this methods scales O(N 3

1 + N 3
2 + N 3

3 + . . . + N 3
S)

where Nx is the length of the x th sequence of S sequences.
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ConStruct provides a convenient user interface for manually
optimizing the sequence alignment to maximize consensus
pairing probability.

10 Methods that simultaneously find an alignment
and common secondary structure

Sankoff originally conceived of a dynamic programming algo-
rithm to simultaneously determine the lowest free energy
structure common to multiple sequences and the sequence
alignment that facilitates the common structure [95]. The
general method is intractable because it scales O(N 3

1 N 3
2 N 3

3
. . . N 3

S). The first practical implementation of the dynamic
programming algorithm method was by Gorodkin et al. with a
program called FOLDALIGN [96]. This program was
designed to find locally conserved base pairing motifs of up
to L nucleotides using a scoring function based on nucleo-
tide identities. It considers at most two sequences and does
not allow multibranch loops and therefore scales O(L4) in
time. A greedy algorithm heuristic is used to build a multiple
sequence alignment from the pairwise alignment predictions.

Dynalign is a dynamic programming algorithm that simul-
taneously finds the lowest free energy common structure and
sequence alignment for two sequences using the free energy
nearest neighbor parameters [97,98]. It optimizes total free
energy, �G◦

total, as defined by:

�G◦
total = �G◦

1 + �G◦
2 + �G◦

gap × (number of gaps)

where �G◦
1 is the conformational free energy of sequence

one, �G◦
2 is the conformational free energy of sequence two,

and �G◦
gap is a penalty applied for each gap in the sequence

alignment. �G◦
gap is an empirical parameter that was fit by

optimizing the accuracy for a set of pairwise structure predic-
tions of 5S rRNA sequences with known secondary structure.
Because the energy function does not include any terms for
sequence matching, it requires no sequence similarity to find
the common secondary structure.

To make the calculation tractable, Dynalign limits the
space of solutions considered for the sequence alignment us-
ing a parameter, M [98,103]. For nucleotide i from sequence
1 to align to nucleotide k from sequence 2:

|i − k| ≤ M

In order for the last nucleotides of the sequence to align, M
must be at least as large as the difference in lengths of the
two sequences. The use of an M parameter, which should
be much smaller than the length of the sequences, leads to
scaling O(N 3 M3) where N is the length of the shorter of the
two sequences. In practice, Dynalign is limited to sequences
of about 300 nucleotides or shorter for a desktop computer.

Benchmarks with Dynalign demonstrate that significant
improvements in accuracy can be achieved by predicting the
secondary structure common to two sequences as opposed
to using a single sequence [97,98]. For example, for a set of
14 5S rRNA sequences chosen randomly, the average sen-
sitivity of base pair prediction using a single sequence is

73.8 ± 27.8%. The average sensitivity for these sequences
using 91 pairwise structure predictions with Dynalign is
91.7 ± 7.0% [97].

CARNAC is an algorithm for finding the low free energy
common secondary structure and alignment for two sequences
that is also rooted in the dynamic programming [104]. It con-
strains the space of solutions by forcing the alignment of
sequence regions of high pairwise similarity, called anchor
points. Empirically, the algorithm is found to scale O(N 4)
where N is the average length of the sequences. CARNAC
has also been adapted to determine the common structure for
multiple sequences [105].

In performance benchmarks, CARNAC has significantly
improved positive predictive value as compared to free energy
minimization of a single sequence [104]. For 20 pairwise
structure predictions with 5 RNase P sequences, on aver-
age, CARNAC had an average positive predictive value of
85%. By comparison, the average positive predictive value
was 68.6% for predictions using a single sequence [35]. The
excellent time performance and positive predictive value of
CARNAC come at the expense of sensitivity. For the five
RNase P sequences, the sensitivity of base pair prediction
by CARNAC was 56% as compared to an average of 64.3%
using a single sequence.

A genetic algorithm has also been written to simulta-
neously find the common secondary structure for multiple
sequences and the sequence alignment [106]. In this algo-
rithm, a common low energy secondary structure is found
for S sequences. A maximum of n stems is maintained for m
structures of each sequence, so the algorithm scales O(n2m2

S2) in time. The fitness criteria start as measuring stability
for a single sequence, then change to structure conservation,
and finally measure of both stability and conservation. On
average, the genetic algorithm had 87.7 and 95.3% sensi-
tivity of base pair prediction for a set of 20 tRNA and 25
5S rRNA sequences, respectively [106]. This is a signifi-
cant improvement compared to the average accuracy for these
RNA sequence types by free energy minimization on a single
sequence (Table 1).

11 Choosing an algorithm for predicting a secondary
structure common to multiple sequences

Each of the algorithms written for finding the secondary
structure common to multiple sequences has advantages and
disadvantages. Generally, there is a trade-off between accu-
racy and computation time. Figure 4 shows three criteria,
sequence similarity, length of sequences, and the number of
sequences, that can be used to select an algorithm. In general,
the algorithms that use a fixed alignment scale better to long
sequences. Of the algorithms that can simultaneously find a
low energy structure and alignment, the genetic algorithm
and CARNAC scale better than Dynalign. Dynalign requires
no sequence similarity, however, and provides a rigorous
dynamic programming solution.
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Fig. 4 Criteria for selecting an algorithm for predicting a low free energy secondary structure common to multiple sequences. Three criteria are
used: sequence similarity, sequence length, and number of sequences

12 Other methods for predicting RNA secondary
structures

Other methods have been explored for predicting RNA sec-
ondary structures aside from free energy minimization. In
particular, stochastic context-free grammars and stochastic
folding simulations are emerging as important alternative
techniques for predicting RNA structure.

Stochastic context-free grammars are probabilistic mod-
els that can be used to generate secondary structures from a
sequence [107]. Simple grammars are shown to perform al-
most as well as free energy minimization models at predict-
ing base pairs [79]. Stochastic context-free grammars have
also been developed to predict probable common structures
for a sequence alignment [108] or to simultaneously deter-
mine alignment and secondary structure [109]. The draw-
back to stochastic context-free grammars is that a set of
parameters need to be trained from a database of known
structures.

Another novel approach is based on modeling folding
pathways with a stochastic simulation [110,111]. These sim-
ulations are able to efficiently incorporate pseudoknots and
a priori include kinetic effects. The drawback to stochastic
folding simulations is that they do not always converge to the
same structure, making interpretation of alternative structures
difficult.

13 Conclusion and prospectus

Because of the relationship between structure and function,
a characterization of a novel functional RNA requires an
understanding of its structure. A large number of tools, rooted
in free energy minimization, are available for predicting an
RNA secondary structure. When multiple homologous
sequences are available, a common secondary structure, with
significantly improved prediction accuracy compared to

single sequence methods, can be predicted. These tools pro-
vide a starting point for experimental structural characteriza-
tion and hypothesis testing.

Two problems for RNA secondary structure prediction
have been receiving increased attention: pseudoknot predic-
tion and constrained structure prediction using multiple se-
quences. It is hoped that explicitly including pseudoknots in
predicted secondary structures will improve the accuracy of
base pair prediction of both pseudoknotted and non-pseudo-
knotted pairs. Significant progress in finding a consensus
structure common for multiple sequences has already dem-
onstrated the significant improvement in accuracy that can
be achieved. Both of these problems are still computation-
ally difficult to treat rigorously using dynamic programming
algorithms because of the computational cost. The problem
currently facing those working in the field is determining
what heuristics provide the best compromise between rigor
and tractability.

RNA tertiary structure prediction is a problem that is of
equal difficulty as protein structure prediction. Pioneering
work has demonstrated successes in structure prediction and
the fact that large RNA crystal structures are becoming avail-
able raises the possibility that the wealth of structural data
they contain can be used to devise novel approaches to pre-
dicting structure [89,112–122]. Free energy parameters may
play some role in tertiary structure prediction. For exam-
ple, it has been shown that dangling end stability, predicted
by nearest neighbor parameters, correlates with stacking in
three-dimensional structures [123].
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